Giải Bài 8 trang 224 Sách bài tập Hình học lớp 12 Nâng cao. – Cuối năm

10


Cho hình chóp S.ABC có đáy ABC

 Cho hình chóp S.ABC có đáy ABC là tam giác cân, AB = AC = a ; mp(SBC)\( \bot \)mp(ABC) và SA = SB = a ;

1. Chứng minh rằng SBC là tam giác vuông.

2. Tính thể tích của khối cầu ngoại tiếp hình chóp S.ABC biết \(SC = {{3a} \over 2}.\)

Giải

(h.l 12a)

        

1. Gọi I là trung điểm của BC, ta có AI \( \bot \) BC. Do (SBC) \( \bot \) (ABC) nên AI \( \bot \) mp(SBC), suy ra \(\Delta \)SAI vuông tại I.

Các tam giác vuông SAI, BAIIA chung, AB = AS, do đó IB = IS, mặt khác IB = IC, suy ra tam giác SBC vuông ở S.

2. Vì IB = IC = ISAI \( \bot \) (SBC) nên tâm O của mặt cầu ngoại tiếp hình chóp S.ABC thuộc đường thẳng AI, suy ra O là tâm đường tròn ngoại tiếp tam giác cân ABC và bán kính R của mặt cầu ngoại tiếp S.ABC cũng là bán kính đường tròn ngoại tiếp tam giác ABC.

Gọi J là giao điểm thứ hai của AI (h.l 12b) và đường tròn ngoại tiếp tam giác ABC thì AJ = 2RAB2 = AI.AJ hay a2 = AI.2R

 \( \Rightarrow R = {{{a^2}} \over {2AI}}.\)           (1)

Mặt khác

\(B{C^2} = S{B^2} + {\rm{ }}S{C^2} = {a^2} + {{9{a^2}} \over 4} = {{13{a^2}} \over 4}\)

Và \(A{I^2} = A{B^2} – B{I^2} = {a^2} – {{B{C^2}} \over 4} \)

               \(= {a^2} – {{13{a^2}} \over {16}} = {{3{a^2}} \over {16}} \Rightarrow AI = {{a\sqrt 3 } \over 4}.\) (2)

Thay (2) vào (1) ta có \(R{\rm{ }} = {{2a} \over {\sqrt 3 }}.\)

Vậy thể tích khối cầu ngoại tiếp hình chóp S.ABC là \({4 \over 3}\pi {{8{a^3}} \over {3\sqrt 3 }} = {{32\pi {a^3}} \over {9\sqrt 3 }}.\)

Giaibaitaphay.com