Giải Bài 83 trang 33 SGK chương 1 đại số 8

9


Giải bài 83 trang 33 SGK Toán 8 tập 1. Tìm n để phân thức chia hết cho 2n +1.

Đề bài

Tìm \(n \in\mathbb Z\)  để  \(2{n^2} – n + 2\)  chia hết cho \(2n +1\).

Phương pháp giải – Xem chi tiết

Thực hiện phép chia \((2{n^2} – n + 2) :(2n +1)\)  để tìm số dư, sau đó căn cứ vào số dư để giải tiếp.

Lời giải chi tiết

Ta có: \({{2{n^2} – n + 2} \over {2n + 1}} = {{2{n^2} + n – 2n – 1 + 3} \over {2n + 1}}\)

= \({{n\left( {2n + 1} \right) – \left( {2n + 1} \right) + 3} \over {2n + 1}}\)

\(= {{\left( {2n + 1} \right)\left( {n – 1} \right) + 3} \over {2n + 1}} = n – 1 + {3 \over {2n + 1}}\)

Để \(2{n^2} – n + 2\) chia hết cho \(2n  + 1\) (với \(n \in\mathbb Z)\) thì \(2n + 1\) phải là ước của \(3\), hay \( 2n+1 \in \{1;\;-1;\; 3;\; -3\} \).

+)  \(2n + 1 = 1 \Rightarrow  2n = 0  \Rightarrow n = 0\)

+)  \(2n + 1 =  – 1 \Rightarrow 2n = – 2 \Rightarrow n =  – 1\) 

+)  \(2n + 1 = 3 \Rightarrow 2n = 2 \Rightarrow n = 1\)

+)  \(2n + 1 =  – 3 \Rightarrow 2n =  – 4 \Rightarrow n =  – 2\)

Vậy \(n \in \{ 0; \;-2; -1;\; 1\}\)

Giaibaitaphay.com

,